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Sigmatropic rearrangements and cycloadditions are subject to strong rate-enhancing sub- 

stituent effects. For cycloadditions, such effects are usually interpreted in terms of transi- 

tion state stabilization as estimated by 2nd order perturbation theory. 
2 
Recently, Hiickel cal- 

culations have been used in an effort to reach a qualitative explanation for the influence of 

substituents on pericyclic reactivity. 
3 

Here, the activation energies for the norbornadiene-cycloheptatriene rearrangement, the 

Cope rearrangement and the Diels-Alder reaction are shown to correlate linearly as AE* = u - Ac, 

where a is an empirical constant characteristic of the reaction and Ac is the calculated energy 

difference between the active orbitals,4 i e L the filled bonding orbital and the empty antibond- 

ing orbital describing the bonds that are formed and broken in the reaction. 

Detailed studies of interactions between filled and empty orbitals in chemical reactions 

are not possible using c-on methods for MO-calculations, the virtual orbital energies of which 

do not correspond to those of the excited orbitals. HAM/3, however, a newly developed semi- 

empirical method, correctly predicts photo-electron and uv-spectra of organic compounds. 5 More- 

over, the eigenvalues of the molecular orbitals computed by this method are defined as the par- 

tial derivative of the total electronic energy with respect to the occupation number, 6E/6qi, 

equivalent*to the orbital electronegativity, 
6 
and are closely related to ionization potentials 

and electron affinities. The energy difference between a filled and an empty orbital constitutes 
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a direct estimate of the arithmetric mean value of the corresponding SO + Sl and SO + Tl uv- 

transitions. 

The active orbitals of the norbornadiene-cycloheptatriene rearrangement, the rate deter- 

mining step of which is a 1,3-sigmatropic shift,7 are the filled a-orbital localized mainly on 

the migrating carbon atom and the empty II 
t 
-orbital. The linear correlation between the known 

g 

activation energies of this system' and As, the energy difference between the active orbitals 

calculated with the HAM/3 method, is shown in Figure 1. 

Similarly, the active orbitals of the Cope rearrangement are identified as the u-orbital 

constituting the single bond to be broken and the II 
* 
-orbital. The linear correlation between 

g 

experimental activation energies* and calculated orbital energy differences (As) is shown in 

Figure 2. 

For the Diels-Alder reaction, the active orbitals are the v2 orbital of the diene and the 

* 
71 orbital of the dienophile. The correlations between activation energies' and active orbital 

energy differences for the reaction of cyclopentadiene and Y,lO-dimethylantracene, respectively, 

with a series of dienophiles are shown in Figures 3 and 4. In this case, As is obtained through 

spectroscopic calibration of the HAM/3-calculated value: 

E ng (diene) = svp (HAM) + IP(ezp) - IP(HAM) 

TV* (ene) = ~z (HAM) + IP(ezp) - IP(HAM) + Asvz* (ezp) - A~z_z* (HAM) - AES_~ (HAM)/2. 

For the norbornadiene and Cope rearrangements, the effect of the electron-releasing sub- 

stituents is to destabilize the filled active orbital, while the energy level of the empty 

active orbital is unaffected. In the Diels-Alder reaction, the situation is reversed. Here, the 

* 
electron-withdrawing substituents of the dienophile stabilize the empty active orbital TI . 

Thus, the origin of the substituent effects in these systems is the destabilization and/ 

or stabilization of the active orbitals of the reactants, rather than an isolated transition 

state effect, as is usually suggested.' This conclusion is consistent with the observations of 

linear relations between W-transition energies and activation energies for thermal rearrange- 

ments of some cyclic olefins 10 and between diene ionization potential and log k in Diels-Alder 

reactions of acylaminobutadienes with methyl acrylate. 11 
* 

The direct proportionality between the activation barrier and the active orbital energy 

difference demonstrated here constitutes an empirical structure-reactivity relationship 

reminiscent of the Hammett equation and related linear free-energy relationships. 
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